Stabilization by state feedback of the singular distributed parameter systems 广义分布参数系统的状态反馈稳定性问题
Variable structure control of a class of distributed parameter systems with delays 一类时滞分布参数系统的变结构控制
Distributed parameter system 分布参量系统
In distributed parameter systems , the continuous spatial distribution of a physical characteristic is taken into account 在分布参数系统中,要考虑物理特性的连续空间分布。
The variable structure control problem of singul ar distributed parameter system is studied and uniformly convergence is consider ed 研究广义分布参数扰动系统的变结构及其一致收敛问题。
The concept of switched systems is introduced into distributed parameter systems , and a distributed parameter switched system is presented 摘要将切换系统的概念引入到分布参数系统中,提出分布参数切换系统的概念。
Lumped parameter systems are described by ordinary differential equations ; while distributed parameter systems are described by partial differential equations 集中参数系统用常微分方程描述,而分布参数系统用偏微分方程描述。
Models of two classes of distributed parameter switched systems are set up through combining the modelling methods of switched systems with those of the distributed parameter systems 结合切换系统和分布参数系统的建模方法,建立了两类分布参数切换系统的模型。
So far , vsc with sm has been deeply studied as an important branch of nonlinear control theory . it has been employed to control discrete - time systems , distributed parameters systems and time - delay systems etc . 目前滑模变结构控制理论已经得到了充分的发展,成为非线性控制理论的一个重要分支,其所研究的对象涉及离散系统、分布参数系统、滞后系统等。
This dissertation studies mainly the identification and the optimal control problem in parabolic pdes , including the existence of solutions of state equations and optimal solutions of the optimal control and the identification problems , optimality conditions , the relation between the state functions and the control functions ( identification parameters ) , the algorithms of infinite - dimensional optimization problems deriving from the identification and the optimal control problem of distributed parameter system 本文主要研究抛物型分布参数系统辨识与最优控制问题,包括状态方程解和辨识与最优控制问题最优解的存在性、最优性条件、状态函数与控制函数(识别参数)之间的关系及求解基于辨识与最优控制问题而产生的无穷维最优化问题的算法。
A distributed parameter system (as opposed to a lumped parameter system) is a system whose state space is infinite-dimensional. Such systems are therefore also known as infinite-dimensional systems.